643 research outputs found

    The Cardiac Timing Toolbox (CaTT): Testing for physiologically plausible effects of cardiac timing on behaviour

    Get PDF
    There is a long history of, and renewed interest in, cardiac timing effects on behaviour and cognition. Cardiac timing effects may be identified by expressing events as a function of their location in the cardiac cycle, and applying circular (i.e. directional) statistics to test cardiac time-behaviour associations. Typically this approach ‘stretches’ all points in the cardiac cycle equally, but this is not necessarily physiologically valid. Moreover, many tests impose distributional assumptions that are not met by such data. We present a set of statistical techniques robust to this, instantiated within our new Cardiac Timing Toolbox (CaTT) for MATLAB: A physiologically-motivated method of wrapping behaviour to the cardiac cycle; and a set of non-parametric statistical tests that control for common confounds and distributional characteristics of these data. Using a reanalysis of previously published data, we guide readers through analyses using CaTT, aiding researchers in identifying physiologically plausible associations between heart-timing and cognition

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Interoceptive Ability Predicts Survival on a London Trading Floor.

    Full text link
    Interoception is the sensing of physiological signals originating inside the body, such as hunger, pain and heart rate. People with greater sensitivity to interoceptive signals, as measured by, for example, tests of heart beat detection, perform better in laboratory studies of risky decision-making. However, there has been little field work to determine if interoceptive sensitivity contributes to success in real-world, high-stakes risk taking. Here, we report on a study in which we quantified heartbeat detection skills in a group of financial traders working on a London trading floor. We found that traders are better able to perceive their own heartbeats than matched controls from the non-trading population. Moreover, the interoceptive ability of traders predicted their relative profitability, and strikingly, how long they survived in the financial markets. Our results suggest that signals from the body - the gut feelings of financial lore - contribute to success in the markets

    Impact of cardiac interoception cues and confidence on voluntary decisions to make or withhold action in an intentional inhibition task

    Get PDF
    Interoceptive signals concerning the internal physiological state of the body influence motivational feelings and action decisions. Cardiovascular arousal may facilitate inhibition to mitigate risks of impulsive actions. Baroreceptor discharge at ventricular systole underpins afferent signalling of cardiovascular arousal. In a modified Go/NoGo task, decisions to make or withhold actions on ‘Choose’ trials were not influenced by cardiac phase, nor individual differences in heart rate variability. However, cardiac interoceptive awareness and insight predicted how frequently participants chose to act, and their speed of action: Participants with better awareness and insight tended to withhold actions and respond slower, while those with poorer awareness and insight tended to execute actions and respond faster. Moreover, self-reported trait urgency correlated negatively with intentional inhibition rates. These findings suggest that lower insight into bodily signals is linked to urges to move the body, putatively by engendering noisier sensory input into motor decision processes eliciting reactive behaviour

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds

    Get PDF
    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds

    Interoceptive training to target anxiety in autistic adults (ADIE): A single-center, superiority randomized controlled trial

    Get PDF
    Background: This trial tested if a novel therapy, Aligning Dimensions of Interoceptive Experience (ADIE), reduces anxiety in autistic adults. ADIE targets the association of anxiety with mismatch between subjective and behavioral measures of an individual's interoceptive sensitivity to bodily signals, including heartbeats. // Methods: In this superiority randomized controlled trial, autistic adults (18–65 years) from clinical and community settings in Southern England were randomly assigned (1:1) to receive six sessions of ADIE or an active ‘exteroceptive’ control therapy (emotional prosody identification). Researchers conducting outcome assessments were blind to allocation. ADIE combines two modified heartbeat detection tasks with performance feedback and physical activity manipulation that transiently increases cardiac arousal. Participants were followed-up one-week (T1) and 3-months post-intervention (T2). The primary outcome was Spielberger Trait Anxiety Score (STAI-T) at T2. Outcomes were assessed on an intention-to-treat basis using multiple imputation for dealing with missing values. This trial was registered at International Standard Randomized Controlled Trial Registry, ISRCTN14848787. // Findings: Between July 01, 2017, and December 31, 2019, 121 participants were randomly allocated to ADIE (n = 61) or prosody (n = 60) intervention groups. Data at T1 was provided by 85 (70%) participants (46 [75%] ADIE; 39 [65%] prosody). Data at T2 was provided by 61 (50%) participants (36 [59%] ADIE; 25 [42%] prosody). One adverse event (cardiac anxiety following ADIE) was recorded. A statistically significant group effect of ADIE on trait anxiety continued at T2 (estimated mean difference 3•23 [95% CI 1•13 to 5•29]; d = 0•30 [95% CI 0•09 to 0•51]; p = 0•005) with 31% of ADIE group participants meeting trial criteria for recovery (compared to 16% in the control group). // Interpretation: ADIE can reduce anxiety in autistic adults, putatively improving regulatory control over internal stimuli. With little reliance on language and emotional insight, ADIE may constitute an inclusive intervention

    Investigating the relationship between cardiac interoception and autonomic cardiac control using a predictive coding framework

    Get PDF
    Predictive coding models, such as the ‘free-energy principle’ (FEP), have recently been discussed in relation to how interoceptive (afferent visceral feedback) signals update predictions about the state of the body, thereby driving autonomic mediation of homeostasis. . This study appealed to ‘interoceptive inference’, under the FEP, to seek new insights into autonomic (dys)function and brain-body integration by examining the relationship between cardiac interoception and autonomic cardiac control in healthy controls and patients with forms of orthostatic intolerance (OI); to (i) seek empirical support for interoceptive inference and (ii) delineate if this relationship was sensitive to increased interoceptive prediction error in OI patients during head-up tilt (HUT)/symptom provocation. Measures of interoception and heart rate variability (HRV) were recorded whilst supine and during HUT in healthy controls (N=20), postural tachycardia syndrome (PoTS, N=20) and vasovagal syncope (VVS, N=20) patients. Compared to controls, interoceptive accuracy was reduced in both OI groups. Healthy controls’ interoceptive sensibility positively correlated with HRV whilst supine. Conversely, both OI groups’ interoceptive awareness negatively correlated with HRV during HUT. Our pilot study offers initial support for interoceptive inference and suggests OI cohorts share a central pathophysiology underlying interoceptive deficits expressed across distinct cardiovascular autonomic pathophysiology. From a predictive coding perspective, OI patients’ data indicates a failure to attenuate/modulate ascending interoceptive prediction errors, reinforced by the concomitant failure to engage autonomic reflexes during HUT. Our findings offer a potential framework for conceptualising how the human nervous system maintains homeostasis and how both central and autonomic processes are ultimately implicated in dysautonomia
    • …
    corecore